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. I

ABSTRACT

It is shown in this report that by considering the ship hull as a floating beam

having shearing and bending flexibility with a distributed viscous damping proportional

to mass it is possible to derive equations of motion under external iorces by the gen-

eral Rayleigh method which yields a solution in terms of normal modes of motion.

Practical methods of determining natural frequencies and normal modes are discussed,

and it is shown that solutions based 3n finite-difference equations can be obtained with

the use either of a digital sequence calculator or an electrical analog. A discussion

is given of coupled horizontal bending and torsional modes as well as vertical modes of

vibration. It is pointed out that the finite-difference-equation method applied to vertical

vibration of a vessel of merchant type has given results in good agreement with experi-

mental values up to the sixth vertical mode.

1. INTRODUCTION

By the term ship vibration as used in this report is to be under-

stood the vibration of the hull considered as a free-free beam. This does not

include the vibration of items of machinery or "local" hull structures such as

decks, bulkheads, and superstructures except in zo far as these items partic-

ipate in the motion of the entire system.

While the literature on ship vibration is by now quite extensive,

the bulk of effort so far has been concentrated on methods of cqlculating the

first vertical mode and of estimating ratios between the frequency of the

first mode and that of the second and third modes by comparison with uniform-

bar flexure theory.

What led to a recent revival of the study of ship vibration theory

at the David Taylor Model Basin and at the University of Michigan under con-

tract with the Office of Naval Research was the realization, during the recent

war, that pi.esent knowledge of the dynamics of the ship structure was entirely

inadequate for the needs of modern design. The same point is emphasized in a



2

paper presented to the institution of Naval Architects in 19116 by J. Lockwood

Taylor entitled "Dynamic Longitudinal Strength of Ships."

While an estimate of the frequency of the fundamental mode of flex-

ural vibration is very helpful in avoiding the possibility of first-order vi-

bration in this mode due to unbalance of propellers or shafting, it falls far

short of enabling one to predict how the hull may respond to impacts from

waves or how it will vibrate at blade frequencies. The latter are usually

well above the frequency of the fundamental mode. If the ship could respond

only in its fundamental mode there would be no wave traveling through it as a

result of an impact at either end, for in this mode both ends move sirnultane-

ously in phase. On the other hand it is hard to imagine a structure of such

size as a ship being struck at one end and responding instantly at the other

end.

Although the Impetus to this study came from the consideration of

shock or transient phenomena, the stealy-state vibration problem was consid-

ered equally important. It was felt that if the basic theory of the dynamics

of ship structure could be worked out the steady-state vibration problem would

automatically be included and therefore the problem was formulated on the gen-

eral basis of the dynamics of ship structure within the elastic limit.

The problem was visualized as being similar to that considered by

J. Lockwood Taylor but with more emphasis on steady-state vibration and with

damping considered. It requires the mathematical formulation of the equation

or equations defining the behavior of the ship girder under dynamic loading

and the development of methods of solving such equations. Since there is abun-

Idant literature on vibration theory, dating back to Rayleigh's "Theory of

Sound" first published in 1877, the problem is chiefly one of finding out how

much of previous theory can be applied. This report represents only a start

in this direction.

It is also clear that mathematical rigor would be out of the ques-

tion in a problem in which so many unknown factors exist and experimental ver-

ification is necessary at every stage. It is also evident that limits must be

set to the scope of the problem. The range of frequencies of vibration must

be limited to those in which the hull preserves its beam-like characteristics.

This does not mean that vibrations in the range of audible frequencies or even

in ultrasonic frequencies are not important but that if such frequencies are

set up by some particular dynamic loading applied to the ship they do not

greatly affect its behavior in the range of frequencies in whl¢h mechgni cn

vibration is ordinarily considered.

I
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Another limitation must also be set, namely that for the permissible

stresses. The ship will behave as an elastic system only when stresses remain

below the elastic limit. Furthermore under sufficiently high loading, such as

due to underwater explosion, buckling and rupture of plating may take place-

giving the elastic system different characteristics.

The dynamic loading of a ship may assume many different types.

There are the simple harmonic forces resulting from rotation of unbalanced pro-

pellers and shafting or from reciprocating engines. There are varying hydro-

dynamic forces due to the rotation of the propellers in a nonuniform wake.

There are varying wave forces in heavy seas and finally, in the case of naval

vessels, there have to be considered forces due to gunfire, projectile impact,

and explosion phenomena. Again it is necessary to restrict the problem to

forces of such magnitude that stresses beyond the elastic limit are not devel-

oped. It is further necessary to restrict the loading to certain types that

are expressible either graphically or analytically for purposes of analysis.

The lateral load having the dimensions of force per unit length

along the hull is assumed to be expressible in the form P(x, t) which means

that the load is given at each point x along the length of the ship at any

time t.

The problem may therefore be stated in general terms as follows:

Assuming the hull of a ship,,together with all loading carried by the ship and

the surrounding water which moves with the ship, to comprise a mass-elastic

system of calculable elastic and inertia constants, what are the principal mo-

tions which it executes under external forces acting in planes perpendicular

to its longitudinal axis and expressed as a function of time and distance

along the length of the ship?

2. THE BASIC EQUATIONS FOUND APPLICABLE TO MOTION IN THE VERTICAL PLANE-

NATURAL FREQUENCIES AND NORMAL MODES

Because of the general symmetry of most ships with respect to a ver-

tical plane containing the fore-and-aft centerline, the problem of motion in

the vertical plane will be dealt with first and used to illustrate the general

approach that has been used in this investigation.

The beam-like nature of a ship's hull is self-evident and has formed

the basis for the ordinary strength calculations universally used in design,

wherein the ship is assumed supported on trochoidal waves which exert a buoy-

ant force per unit length which varies witn distance from the end but is

lReferences are listed on page 46.
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considered constant in time, that is. the analysis is carried out as a problem

in statics.

The simple bending theory of beams has been widely used in deriving

a differential equation for the free transverse or flexural vibrations of uni-

form slender bars, the differential equation being

EI y + M 2 2 y = 0
ex" at2

where E Is Young's modulus,

I Is the moment of inertia of the area of the section with respect to
its neutral axis,

y is a displacement in the vertical plane,

,u is the mass of the bar per unit length, and

t is the time.

The solution of this equation for a uniform bar with free ends yields the for-

mula for the natural frequencies:

= & 2 .! E -"

where wn is circular frequency,

L is the length, and the

n's are the "characteristic numbers" arising in the solution of this
differential equation with these specific boundary conditions.

As given by Rayleigh2 in his "Theory of Sound" the characteristic numbers fall

closely in the ratios of the odd numbers starting with 3, that is, 3, 5, 7, 9,
etc. The first three characteristic numbers are 4.73; 7.853; and 10.996.

It was understood from the beginning of this study that the ship de-

parted materially from the uniform bar whose vibrations have been treated the-

o)-etically by numerous authors. The principal elements of departure are the

variation in mass along the longitudinal axis, the variation in bending and

shear rigidity, and the addition of the inertia effect of the surrounding

water. Nevertheless an empirical formula very similar to the above uniform-

bar formula was found by Schlick 3 to give a fair estimate of the fundamental

vertical mode of vibration provided an appropriate empirical "constant" is

used. The well-known Schlick formula is

N = /I
* V DL3
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and in Reference 4 are given values of 0 found applicable to certain classes

of ships for a particular system of units used in expressing the other

quantities.

Since the work of Schlick, demonstrating that the uniform-bar for-

mula could be utilized in devising a formula for estimating the fundamental

frequency of a ship, numerous investigators have considered the possibility of

solving the differential equation for the nonuniform bar in bending only, with

the thought in mind that thereby the effects of the variation of mass and bend-

ing rigidity along the length of the ship would be taken into account. The

literature on this subject is now extensive as may be seen by reference to the

Bibliography.

In connection with the planning of the research program under dis-

dussion it was concluded that the Stodola method of solving the differential

equation of the nonuniform bar as applied by Schadlofsky5 would give a fairly

good estimate of the fundamental frequency and the two-noded vertical normal-

mode shape. This is a method of iterated integration for finding normal modes

and natural frequencies. This method applied by Stodola to rotors in bearings

was adapted to the ship problem by J. Lockwood Taylor,6 Schadlofsky, and

others. Other methods also were considered, such as the energy method applied

by Lewis 7 and the Rayleigh-Ritz method recommended by Timoshenko,8 but what

appeared to be lacking was a flexible method of dealing with the general dy-

namical problem.

The group working at the University of Michigan solved by means of

operational calculus the partial differential equation for the uniform bar

subject to bending deflection only, having a uniformly distributed viscous

damping and acted upon by a transverse load which was an arbitrary function of

time and position along the bar. This required the solution of the differen-

tial equation

E I- 2L y + -2 + c Y= P(x, t)

ax" at2 at

where E is Young's modulus,

I is the moment of inertia of the section area,

p is the mass per unit length,

c is the damping force per unit length of bar per unit velocity,

y is a displacement normal to the axis of the bar,

x is a coordinate along the axis of the bar,

t is the time, and

P(x, t) is the external force per unit length varying both with x and t.
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A solution of this equation was found by the operational method em-

ploying the Laplace transformation. The derivation is given in the second

progress report of the University of Michigan on its contract with the Office

of Naval Research.

The solution shows that, whatever form the function P(x, t) takes,

the response of the bar is expressible in a series of normal modes; in other

words, the system behaves in general like the systems whose small oscillations

were studied by Rayleigh. He showed that, for systems in which the damping

was proportional to the mass if the displacements in the normal modes were

taken as generalized coordinates, the kinetic and potential energies could

each be expressed in terms of sums of squares of these coordinates and the

rate of energy dissipation could be expressed as a sum of terms involving the

squares of the generalized velocities. Moreover such a system does not par-

take of wave motion in the ordinary sense in that there is no fixed rate of

propagation of a flexural wave. If the bar is struck at one end, a finite

time will be required before a finite motl:i takes place at the otner end, but

the process is the result of compounding motions in normal modes in each of

which the system deflects simultaneously at all points ratner than the result

of a flexural wave traveling back and forth.

The normal modes of such a system also possess the property of or-

thogonality with respect to the mass per unit length; that is

L

fuXn(X) Xm(x)dx = 0
0

where X (X) and Xm (x) are any two distinct normal modes.

Another important result is that the influence function is tne same

as the normal-mode function. This means that the effect of a concentrated

force in exciting any given mode of vibration is proportional to the amplitude

of the mode shape at the point at which it acts and is therefore zero at the

nodes. There also follows from this result a reciprocity theorem similar to

Maxwell's theorem for statically loaded beams: If a simple harmonic force

applied at x, produces a certain amplitude at x2 the same force applied at x2

would produce this same amplitude at xi .

It also follows from the solution of the uniform-bar problem that in

each normal mode the system behaves as a system of one degree of freedom would

behave and as though this mode only were present. The amplitude produced in

each mode by a given simple harmonic driving force depends on the magnitude of

the force, the influence function, the effective mass, stiffness, and damping

constant of the system in that mode and on the ratio of the frequency of the

force to the natural frequency of the mode. The ordinary resonance curve for
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a system of one degree of freedom is applicable to each normal mode individ-

ually. From this it follows that if the frequency of the force coincides with

one of the normal-mode frequencies, unless the system is very heavily damped,

the amplitude in that mode will so far outweigh the amplitude in any other

mode that that mode will predominate.

The calculation of the response of such a system in each of its nor-

mal modes is greatly facilitated by the application of the concept of "effec-

tive" values. While each normal mode responds as a system of one degree of

freedom, the values of the effective mass, spring, and damper of the equiva-

lent one-degree system are different for each mode. The response in each nor-

mal mode is obtained by treating the familiar differential equation for one

degree of freedom by any one of a number of standard methods. The equation

for the ntn mode is

Mnq n + Cn6n + K nqn = Qn(t)

The effective values to be used in this equation are defined as follows:

I

Mn =fuX(x)dx

on f cX'(x)dx
0

n nn

L
Qn(t) =f P(x, t) Xn(X)dx

0

where Xn (x) is the nth normal-mode function in arbitrary dimensionless units

n
and wn is the undamped frequency. The q's have the dimension of length so

that the displacement at any point x is

n=ao

5 %Xn(x)
n=

Further discussion of the process of using effective values for the various

normal modes as applied to the nonuniform bar with both shear and bending is

given in Section 4.
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Thus the dynamic problem of the uniform bar as envisaged above can

be readily handled once the normal modes and natural frequencies have been de-

termined. Rayleigh2 showed the great generality of the concept of normal

modes and natural frequencies for small motions of mass-elastic systems. The

ship, although having a nonuniform distribution of mass and stiffness, may be

approximated by a system of lumped masses connected by inertialess elastic mem-

bers. Thus it may be expected to enjoy the properties of the systems treated

by Rayleigh. For elastic systems witn damping the "dissipation function" must

be of a certain type, namely, proportional to velocity and proportional to

mass. Hence if a linear partial differential equation in x and t describes

the dynamical behavior of the ship which is a nonuniform beam and if Rayleigh's

theory applies, then although EI, ,, and c all vary with x, the ratio c/u must

be constant for all values of x.

An appreciation of the extraordinary properties of such a system Is

of the greatest assistance in understanding its response to both steady-state

and transient forces and one of the major phases of the program undertaken by

the Taylor Model Basin was to determine the extent to which the ship, in spite

of its complexities, possesses the properties of the systems investigated by

Rayleigh.

Considerable attention was given to the extension of the calculation

of vertical flexural modes of ships into the higher modes by the Stodola and

Rayleigh-Ritz methods (see Reference 9), but it was soon found that the method

of finite differences as applied to the problem of critical speeds of shafts

by Prohl'° and Myklestad" offered the most promise. Study of the latter meth-

od showed that it could be readily adapted to the free-free beam by suitable

allowance for the particular end conditions involved. A Taylor Model Basin

report'2 was published in July 1947 showing how the method based on bending

theory only could be carried out for a ship by means of a digital computer.

While the necessary data for carrying out such calculations on a naval vessel

were being worked up from ship plans, a test was made on the ship in question

by means of a vibration generator. Details of this test will be found in

another Taylor Model Basin report.'5 Ten modes of vibration of the vessel

were found and investigated, the vessel being anchored in deep water. The yes-

sel, the USS NIAGARA (AFA87)-an attack transport, was a converted merchant

ship and for this purpose had the advantage over other classes that it carried

no armor and that the guns had been removed so that the discontinuities exist-

ing on many classes of naval vessels were not a problem. Further details of

this ,esSel " also , in Referende i4.
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When calculations were made for the NIAGARA by the Prohl-Myklestad

method, it was found that the frequency of the fundamental vertical mode

checked the experimental value fairly well but that the frequencies correspond-

ing to the second and third modes were much too high and the discrepancy in-

creased with the order of the mode. It was to be expected that the frequen-

cies would b6 too high since the method made no allowance for shear deflection,

but the magnitude of the discrepancy in the second and third modes was so

great as to make it apparent that unless a shear flexibility term could be in-

corporated into the differential equations of the nonuniform beam attempts to

calculate the higher modes would be fruitless.

The task of incorporating a term for shear flexibility into the fi-

nite difference equations was not found too difficult and in fact it was found

that a term for tne effect of rotary inertia could also be readily included.

The problem was arranged for digital computation with both shear and rotary

inertia terms included and was carried out for the USS NIAGARA for a number of

different assumptions: 1) That the hull could deflect in bending only, 2)

that the hull could deflect in shear only, 3) that the hull could deflect in

combined shear and bending with rotary inertia omitted, and 4) that the hull

could deflect in shear and bending with the rotary inertia term included.

These variations were readily tested without changing the coding of the prob-

lem for the digital sequence-controlled calculator simply by making the appro-

priate terms in the table of initial data equal to zero. The results of the

calculation are summarized in Reference 15. The principal facts disclosed

were the following: The calculation based on bending only is in fair

agreement for the first vertical mode but becomes progressively too high be-

yond the first mode; the calculation based on shear deflection only is quite

high for the first mode but becomes progressively nearer the true value as the

order of the mode increases; in the case of USS NIAGARA the inclusion of ro-

tary inertia had a negligible effect on the results.

As will be seen from the tabulation in Reference 15, the calculations

based on shear and bending with rotary inertia neglected check the experimen-

tal values up to the sixth mode within 5 oercent with the exception of the

fundamental mode.

From the profile of this vessel it can be seen that its island or

superstructure comprising three decks extends for about 30 percent of the

length of the null. When the moment of inertia of this island was added to
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the moment of inertia previously computed up to the weather d;ck and the cal-

culation repeated, it was found that the first mode checked within 1 percent
~but that the remaining frequencies were all too high. It thus appeared that

the stiffening effect of a superstructure of such proportions cannot be ne-

glected in the first mode but that it has little effect beyond the f~rst mode.

This does not seem at all unreasonable as the first mode is the only one in

which bending predominates and the superstructure probably adds very little to

the shear stiffness.

The method of finite differences, as described in Taylor Model Basin

reports 632, 706, and 715, thus appears to offer the most promise at the pres-

ent time. This may be carried out by a digital sequence-controlled calculator

or, as is shown later in this report, by an electrical analog. At this writ-

ing, however, the question as to how much the superstructure contributes to

the bending and shear rigidities remains undetermined. Empirical formulas may

be given which will give effective values of El for computing the fundamental

vertical mode, but the value may not be applicable to the high modes. Until

more experimental data on this subject are accumulated it appears advisable to

make calculations with and without the superstructure. Judgment will be re-

quired in interpolating between the values obtained from the two cases. When

improved methods of evaluating the coefficients to be used in the differential

or difference equations are devised, such interpolations should no longer be

necessary.

The difference equations used in this calculation (neglecting the

term for rotary inertia) are as follows:

Vn = Vn- + n-l A Xyn 1 w 2

M + Vnx
Mn n-i n

Y Y +Mni Axn - Ein.1

V Ax
Yn = Yn- + n Ax -

KAGn
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where V is vertical shearing force,

M is bending moment,

Y is slope due to bending only,

y is vertical deflection

p is pass per unit length including virtual mass of the surrounding
water,

E is Young's modulus,

I is the moment of inertia of the section area up to the weather deck,

K is the ratio of the average shear stress to the shear stress at the
neutral axis under vertical loading,

A is the section area,

G is the shear modulus of elasticity, and

n is the number identifying the station along the length of the ship.

In the calculations made for the NIAGARA the virtual mass was de-

rived from Lewis' data16 and checked by the approximation given by Prohaska.'7

The added mass was kept the same throughout the calculation which is not in

accordance with Lewis' theory. If there were no other unknowns in the problem,

the good results obtained could be used to support the view that the virtual

mass for vertical vibration does not vary appreciably from one mode to another.

However, the data on one ship cannot be used at the same time to verify a the-

ory of virtual mass and a theory of elastic behavior. Hence the ultimate ver-

dict on the soundness of tne method presented here must await the outcome of

further comparisons between calculated and experimental data.

It is now in order to inquire what answer the comparison between ex-

perimental and theoretical results obtained so far give to the question of the

similarity between the dynamical behavior of the ship and the ideal systems

treated by Rayleigh. In the case of the NIAGARA vertical normal modes up to

the sixth have been both calculated and observed experimentally. However,

beyond this point normal modes could not be found and no appreciable

amplitudes could be produced although the vibration generator was operated

well above this range.

While as yet the situation is obscure in the neighborhood of the

sixth mode and beyond because of the limited amount of experimental data, this

does not impair the validity of the method in obtaining components of response
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up to modes of this order. It is believed at present that modes beyond the

sixth or thereabouts are difficult to excite because of the increased imped-

ance as shown by Equation [III] in Reference 9 and because of the tendency for

cancellation with components in adjacent modes.

The naval architect is concerned chiefly with how the ship will re-

spond to a first-order exciting force (one cycle per revolution of shaft) due

either to an unbalanced propeller, unbalanced shafting, or a bent propeller

blade and to blade frequency exciting forces whose order is equal to the rpm

times the number of blades per propeller.

Except on small high-speed craft the first-order vibrations will
fall chiefly in the range 50 to 500 cpm and the blade frequencies in the range

150 to 1500 cpm. When first-order vibration occurs, it is usually due to res-

onance with one of the lower modes of the hull and in that case the vibration
will be felt throughout the ship except in the vicinity of the nodes. However,

it is rather common to observe that from about half full power on up to full

power a ship will vibrate at blade frequency at the fantail rather steadily

over this speed range with no indication of a resonance and with the vibration

extending only for about a quarter of the length of the vessel. According to

the theory presented in this report an explanation of this phenomenon appears

possible. The plane of the propellers is usually at a distance of only about

10 percent of .he length of the ship from the after perpendicular, and the ex-

periments on the NIAGARA showed the plane of the propellers to be aft of the

node for the first five modes of vertical vibration. In steady-state vibra-

tion the displacement at the driving point is in phase with the driving force
well below resonance, 90 degrees out of phase (lagging) at resonance, and 180

degrees out of phase well above resonance. It would be a common condition for

the blade frequency at the normal running speed to fall above the natural fre-

quency of the fifth vertical mode in which case all the first five modes would

be excited at the driving frequency and in phase at the fantail. While the

fifth mode would have a much greater resonance factor than the first, its in-

fluence function would be much less as its aftermost node is much nearer the

stern. Thus the product of resonance factor and influence function for an ex-

citation at the propeller could well be of the same order of magnitude for the

first five vertical mode cow:)oaents. If this were the case, the components of

amplitude in eacn mode would be the same at the fantail and they would all be

in phase. They would not all reinforce one aiothe.-,however, throughout the

ship. In Figure 15 of Reference 18 is shown the result of combining the first

.L V ~ 9..A~J £&%A . J ai.A.4JnJ1.r n4a,..ii . Ittd.& %A4'.A a %w IIG . - j c. C&A.A .4
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phase at the after perpendicular. It can readily be seen from this figure

that a forced vibration concentrated in the stern is consistent with the

theory.

3. THE PROBLEM OF EVALUATION OF COEFFICIENTS

APPLICABLE TO VERTICAL VIBRATION

It is obvious that the accuracy of any theoretical calculation is

limited by the accuracy of the system constants used. The calculation of ver-

tical modes as outlined in the preceding section requires the evaluation (at

equidistant vertical cross sections of the ship) of the effective mass per

unit length, the bending stiffness, and the shear stiffness. The evaluation

of each of these quantities must obviously be based on certain simplifying

assumptions.

In determining the mass per unit length the weights of hull, machin-

ery, fuel, water, and stores are generally known with sufficient accuracy for

such a calculation in the early stages of design. The mass that must be added

for the inertia effect of the surrounding water is considerable and varies

with the change of form of the hull in passing from stern to bow. Theoretical

values were worked out for various ship-type forms from potential flow theory

by F.M. Lewis 16 and, wherever values estimated in accordance with his paper cn

the subject have been used by the Taylor Model Basin in the calculation of the

first mode of vertical vibration of full-scale ships, the results have been

good. If there were no other uncertainties in the problem, this could be con-

sidered a sufficient verification of Lewis' method. This, however, is not the

case and all that can be said at present is that the indication is that Lewis'

method gives a good estimate of the virtual mass for the first vertical mode.

For the calculation of higher modes it is of the utmost importance to know

whether the virtual mass remains the same br whether it varies. It is also

important to know whether it varies with frequency and amplitude. Lewis con-

sidered it to be independent of frequency and amplitude for any one mode but

to vary with the order of the mode due to increasing departure from two-

dimensional flow.

Model experiments made at the U.S. Experimental Model Basin 9 had

not been too helpful in checking the virtual mass theory and, because of the

high frequencies that had to be used, were not considered reliable. In view

of the uncertainty of the whole question it was decided to use Lewis' values

for the two-noded mode throughout the calculation and as has been pointed out
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the result,- on the NIAGARA were fairly good up to the sixth vertical mode.

Moreover, it was found that the data given In Prohaska's paper'7 yielded val-

ues very close to those given by Lewis' method without the necessity of graph-

ical work. This procedure is as follows:

Divide the ship into twenty equal sections starting with the after

perpendicular.

Let b = half breadth of a section at the waterline in feet,

B = whole beam of the section in feet,

L = length between perpendiculars in feet,

d = draft in feet,

= sectional area coefficient, that is the ratio of the area
of the underwater section to 2bd,

C = section coefficient,

J = longitudinal factor,

P = weight density of sea water in tons/ft3 . and

g = acceleration of gravity in ft/sec2 .

Estimate $ for each section by inspection. Then compute B/d for each section.

Next find the value of C corresponding to these values of 6 and B/d from Fig-

ure 16 of Prohaska's paper reproduced as Figure 1. Compute L/B where B is

taken for the midship section, and evaluate J from Figure 2. This figure is

based on Figure 17 of Prohaska's paper.

1.0 1.0 5 6_7__8 9 10 11 12 US6

0.9 --- lii'
-I.Io 0.90

0.8 "9--------1.00

0.80/3/
0.7 .

o.6 0.70-- -/

0.0

-0.60_E OJ
0 I 2 3 4 5

9/d Figure 2 - Curve for Estimating
Figure 1 - Curves for Estimating the the Coefficient J*

Coefficient C*

*The curves of Figure3 1 and 2 were taken from Figures 16 and 17, respectively, of: ProhaskA, C.W.,
"The Vertical Vitration nf Ships, Tne Shipb.Aider and Marine Engine Builder, October and November 1947.
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The virtual mass to be added to the mass of each section of the ship

is then obtained from the formula

JC b2PAx
2g

The term representing bending stiffness in the calculations, namely
Ax is evaluated on the basis of simple-beam theory but with allowance for

judgment in selecting the items of the section area to be included in the mo-

ment of inertia. Although the subject is a very broad one, what experimental

evidence is available20 seems to indicate that in most usual designs simple-

beam theory applies quite well when static bending loads are applied to a hull.

The beam is considered to be the shell with its longitudinal framing up to the

weather deck, and in general the superstructure is not included in the calcu-

lation. Also as in simple-beam theory stresses due to bending loads have been

found to be proportional to the distance from the neutral axis. The following

rules appear to be consistent with the experimental evidence. Shell plating

and all longitudinal girders are included. Longitudinal bulkheads are in-

cluded in the evaluation of the moment of inertia of a section only when they

extend at least one bulkhead space beyond the section. Decks with expansion

joints are not included. Side armor is not included but experimental justi-

fication for this is lacking; this same remark applies to armored decks. Ma-

chinery members are not considered to contribute to longitudinal strength of

hulls. As pointed out elsewhere in this paper it appears that account need

be taken of the increased bending strength due to a superstructure by making

calculations with and without the superstructure included.

The shear flexibility term AX has been derived so far on the basisKAG
of the theory of rectangular beams. In this an expression for the shearing

stress at any distance from the neutral axis is obtained by considering the

equilibrium of the parallelepiped formed by two transverse planes a distance

Ax apart and two horizontal planes one of which is the top surface of the beam

and the other of which is the plane at the reference distance from the neutral

axis. A is the total area of the section carrying bending stress, G is the

shear modulus of elasticity, and h is given by the formula

K- Ib
A (VA)

where I is the moment of inertia of the beam with respect to the neutral axis,

b is the width of the beam at the neutral axis,

A is the area of the section, and

(VA) is half the moment of area of the section with respect to the neutral
axis.
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If V is the vertical shearing force, the deflection between two sections dis-

tance Ax apart is given on this theory by the formula

Ay5 = _V Ax•Ys = A 4

Hovgaard2 l gives the following formula for the static deflection of a ship due

to shear:

G f 2 t

S ]

In this formula V is the vertical shearing force at the section,

I is the moment of inertia of the section, and

f-M-ds is obtained by integration around the shell, s being
a distance measured along the perimeter of the plating,

t being the plating thickness at the point in question,
and m being the moment with respect to the neutral
axis of the area between the point in question and the
centerline of the top deck.

For the two formulas to yield the same deflection due to shear

f f s must equal (VA)/b. For a rectangle of width t and depth 2h the first

formula gives h/2t while the second gives h2/2. Hence in the case of a rec-

tangle the two formulas agree only when ht = 1.

An exact stress analysis of a structure as complicated as the hull

of a ship is a problem for the future. Another possibility is to make the

simplifying assumption that the vertical shear load is carried only by the

side shell plating and is uniformly distributed over the area of this plating.

The shear flexibility then becomes simply Ax/GA where A is the area term in

question. An attempt has been made at the Taylor Model Basin to derive equa-

tions relating shear and bending flexibilities from energy considerations with

certain simplifying assumptions but the results are not presented here because

they have not been checked experimentally as yet. The problem may be de-

scribed as that of reducing the three-dimensional elastic properties of a ship

to those of an equivalent one-dimensional beam.

Although little has been said about it up to this point, it is essen-

tial to include in the discussion of the evaluation of coefficients the damp-

ing coefficient. While the damping is known to be quite low at low frequen-

cies and small amplitudes so that it has a negligible effect on the natural

frequencies and normal-mode shapes, an estimate of its magnitude is a prereq-

uisite to a calculation of amplitudes of forced vibration at resonance since

in this case it is the damping alone that limits the amplitude attained.
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It might seem natural that since the ship is vibrating in a fluid

medium most of the damping would be due to the absorption of energy by the

medium. This, however, does not appear to be the case. Not only is the total

damping quite low but the fraction of it due to the surrounding medium appears

to be quite small. From measurements of the decay of the first mode of verti-

cal vibration set up by dropping and then snubbing the anchor, it has been

found that the logarithmic decrement is approximately 0.03, which for a system

with viscous damping corresponds to a ratio of damping to critical damping of

only about one-half of one percent.

The uniform-bar problem treated at the University of Michigan in-

cluded a term for uniformly distributed damping. This coefficient represented

the damping force per unit velocity per unit length along the axis of the bar.

The assumption of uniformly distributed damping was made for simplicity, but

it was not intended to convey the idea that In the case of the ship the damp-

ing action is due chiefly to the surrounding water. Tne solution of the Mich-

igan problem saows that when a simple harmonic force acts on a uniform beam

with this type of damping the steady-state vibration resulting is the sum of

a series of terms each of which represents a d-flection in a normal mode of

the undamped beam multiplied by a resonance fa,. tor depending on the ratio of

the frequency of the force to the natural frequency of the mode and to the mag-

nitude of the damping. This is true also for the nonuniform bar provided c/9

is constant as is shown in the following section.

In the case of the USS NIAGARA an equivalent uniformly distributed

viscous-damping constant was derived from the test data as follows: The ener-

gy per cycle fed into the system at resonance was computed from the formula

W = 7r PYO

where P is the force amplitude of the vibration generator at the particular

resonance in question and yo is the single amplitude of forced vibration at

the driving point, i.e., the amplitude produced at the point of the hull where

the vibration generator was installed. If this energy is all dissipated by a

uniformly distributed viscous damping, the equation for energy dissipation per

cycle is
L

W = rcW f y2dx

where c is the damping force per unit velocity per unit length,

w is tne circular frequency at resonance, and

y is the single amplitude at any point along the hull at resonance.
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Therefore P Yo

f Ly 2dx

As shown in TMB Report 69913 consistent values of c were thus ob-

tained for the first two vertical modes of the NIAGARA but for the third mode

the value doubled and for the fourth mode it was about eight times as great.

Moreover, when the attempt was made to reconcile the values thus obtained with

values known from data on towing of friction planes or from flow-in pipes-by

expressing the damping constant in terms of damping resistance per unit veloc-

ity per unit projected area-it was found that the values for the NIAGARA were

over 100 times as great. This suggested that in the case of the ship much

more of the energy must be absorbed in the structure than is absorbed by the

surrounding water.

From a practical point of view, if an effective damping constant per

unit mass per unit length could be found which would hold for different class-

es of ships and for the different modes it would not make any difference as

far as estimating forced vibration amplitudes is concerned whether the energy

was dissipated internally or externally. It seems likely that a better value

would be obtained by assuming c to be proportional to u (the mass per unit

length including virtual mass), especially since the logarithmic decrements

are observed to be about the same for different ships. This would also have

the advantage of conforming to the dissipative systems treated by Rayleigh.

4. THE GENERAL DYNAMICAL PROBLEM OF VERTICAL MOTION WITHIN

THE ELASTIC RANGE-TRANSIENT AND FORCED VIBRATION

So far the subject of chief interest in ship-vibration theory has

been the calculation of the vertical normal modes and natural frequencies, but

the methods and equations discussed so far may be employed to obtain the de-

flection of a ship as a function y(x, t) under any external loai which is

given in the form of a function P(x, t). This problem, one of Increasing im-

portance in naval architecture, may be called the dynamics of a ship's struc-

ture. The standard procedure in strength calculations for ships as outlined

by Rosjell and Chapman' has served well in the past and will continue to serve

in the future, but it has become increasingly evident In recent years that

many weaknesses In design show up only under dynamic conditions. In the fu-

ture it may be possible to set up a standard procedure for dynamic-strength

calculations but already the answers to a number of vital questions are fur-

nished by the basic theory involved in the vibration calculatins.
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Before any dynamical theory is adopted it is well to have clearly in

mind its limitations. Firstly, the theory presented here is limited to deflec-

tions within the elastic range so that any formulas given cannot be considered

valid once the calculated deflections exceed this range. This makes possible

the treatment by means of linear equations. Moreover, aside from the problem

of the design of protective structures to withstand underwater explosions, a

strictly naval problem, a ship should be so designed that under the most se-

vere sea conditions the stresses developed would at all points be well below

the elastic limit.

Secondly, the theory must for the present be confined to the ship

girder as a whole and cannot take into account various local structures such

as masts, deckhouses, and skegs, important as they may be. It is clear that

the validity of such a treatment becomes more and more questionable as the fre-

quency increases. It is an important part of the present problem to define

the frequency limits within which the theory may be expected to apply.

With computational methods now available the treatment is facili-

tated by the assumption of viscous damping. As previously stated this does

not mean that the energy must be absorbed by the surrounding water. On the

contrary the scheme can be used where all the energy is absorbed internally

in the form of heat. But the use of a viscous-damping constant is based on

the assumption that an equivalent viscous-damping constant can be found and

that its value is independent of frequency and amplitude. What little data

are available on the subject suggest, however, that the damping "constant" in-

creases with both amplitude and frequency and thus the theory is less valid in

the higher modes.

Lastly, the methods described are based on the assumption that the

inertia terms remain constant throughout the calculation. Lewis' theory 16 in-

dicates that for a ship of the proportions of the NIAGARA the virtual mass for

the three-noded mode should be about 10 percent less than the virtual mass for

the two-noded mode. As previously pointed out, this variation, which is due

to the increased departure from two-dimensional flow, was not taken into ac-

count in the calculation of the vertical modes for the NIAGARA. It may well

be possible in the future to take into account this variation in virtual mass,

but at the present time it is felt that neither the state of knowledge of the

virtual mass itself nor tne methods of computation available make it practical

to take this into account in the general dynamical problem of the ship hull.

The above restrictions apply only to tne estimate of the "constants"

defining the properties of the mass-elastic system. It is well to observe

that in the case of tne ship very little is known about the dynamic loads to

which it will be subjected in service. There are some data as to the
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magnitude of blade frequency forces due to the action of the propellers based

on the model experiments made by F.M. Lewis22 but this was carried out for

only one vessel and to the authors' knowledge little progress has since been

made in further developing the method. As far as transient forces due to

wave impacts are concerned little data seem to be available at present. See,

however, References 23 and 24.

In dynamical problems of mass-elastic systems a distinction is gen-

erally made between the steady-state and the transient problem. However, it

may be noted that in the theory of linear systems the response to a transient

load can be found once the impedance to a simple harmonic force is known. In

this report the steady-state-vibration problem is treated first and the tran-

sient next.

The steady-state problem of the ship as applied to vertical vibra-

tion involves the calculation of the amplitude of vibration set up at any

point of the hull by a simple harmonic vertical driving force acting at any

point of the hull and having a frequency within the range in which the theory

is found to apply. Tentatively this range may be taken to be 50 to 1500 cpm.

Two alternative methods of dealing with this problem are considered.

The first is based on the assumption that the dynamical system can be repre-

sented by a set of linear equations and that its natural frequencies and nor-

mal modes have already been found by the method outlined previously. The data

considered available for the ship in this case are the values of U, El, and

KAG as functions of distance x from the after perpendicular where U is mass

per unit length including virtual mass of entrained water, EI is bending stiff-

ness as previously defined on page 15, and KAG is shear stiffness as previous-

ly defined on page 17. There is also required the value of c, the effective

damping force per unit velocity per unit length, given as a function of length

and assumed proportional to i.

If a driving function P(x, t) acts on such a system, the equations

governing the ensuing motion comprise the following set:

p _..Y + c-+ f + = P(x, t)

at 2

Ox

ay i- (1]
OX

V = -KAG$

ax
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where x is the distance along the longitudinal axis of the hull,

p is the mass per unit length (including virtual mes),

c is damping force per unit length per unit velocity,

y is displacement in the vertical direction,

V is the total vertical shearing force exerted by one section of
the hull on the sectionz to the right,

P(x, t) is the external driving force per unit lengtn,

M is the bending moment exerted by a section of the hull on the
section to the right,

fi is the component of the slope of y due to shear deflection only,

Y is the component of the slope of y due to bending deflection only,

KAG is the vertical shearing rigidity of the hull, and
El is the bending rigidity of the hull.

In Equations [1], ,, El, KAG, and c all vary witn x but c/p is as-

sumed to remain constant.

Let it be assumed that P(x, t) can be represented by the series

=0 (x)(t) X(x)
=xf p (x ) X (x) dx

where Xi is the ith normal mode of the system in arbitrary dimensionless units

and Qi(t) has the dimension of force. This implies that Qi(t) = fLP(x, t)

Xi(x)dx.

Let it then be assumed that solutions exist in the form

y(x, t) =Z qlI t ) X iix)

I=00

M(x, t) Z -,(t) Mi(x) [2)

i=1

I COv(x, t) . 5.., qi(t) vi(x)

where C, has t.he -dimension of length and where V,=Jow' Xi(x)dx and
X

Mi= ffU(x)4 X,' x) Ox QZX, Th -:.e xi s bat.sfy L f 7] orn age 235.
.0
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After elimination of 6 and Y from Equations [1] there results the

set

-+c + P(x, t) = 0

a t2  C

0 [3OM] 3)
Ox

02y + t V M=0ax2 "x T--0

Substitution of Equations (2] in [3] yields

= " + c4ixi + qVl- 6 . --
1=1 J /#X'(x)dx

0

i= 1

where the dot notation signifies differentiation with respect to t and the

prime notation signifies differentiation with respect to x.

Equations [4] are satisfied if each term in the summations is set

equal to zero. Then

.Uixi+ ci + -ii P(q4xi1 0
fX2 x dx

0
/ I~ c I  I o[5)(xd

v --Mi (5]

M= El X1 + EI2AOJ
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By substitution in (5]

A14 x+ eq X + q 1 [EI XI + EI (Gi)' = IL2 [61 ( #Xi(xldx

As shown on page 17 of Reference 25, for a normal mode

ElX, E ( vi), = 2 17Xi KAG X* (71

Hence

(x)Q Xi

piX, + cqiX1 + qiU!X( = Irk'[xi (8]

"fu(x ) X' (x)dx
f0

Whence

Q4(t)41 + U l + wqi =  UiX2 (x)dx [9]

L

If both sides of [91 are multiplied by f/ XI(x)dx there results the

equation 0

Mini + Ciq i + Kiq= i(t) [qa]

where the effective values Mi, Ci , and Ki are as defined on page 7.* This is
the ordinary differential equation for a system of one degree of freedom acted

on by a driving force Qi(t).

If in Equation [9] q(O) = (0  = 0 the solution is

C.ql~)  fQiT -2M I
= IM e sin X1 (t - r)dr [10]

where Xi= V2 " 1(i) = V, 2 _1C) 2

and
i=oo

i= 1

*M as used here !'r -!fe t .ve mass is not t: be confLsed wit. M as used for bendirg moment on
paxe 21.
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If a concentrated sinusoidal driving force F sin wt is acting at xo
t then

Qi(t) = F Xi(x0) sin wt

If this value is substituted for Qi(t) in Equation [9al the steady-state solu-

tion becomes in complex form

F Xi(x o) ej
M"

qi(t = (2+j ) (x)dx
0

where j2 = -1, or in real form

F X (xo) sin (wt-¢i)

W~1W)] + (,UC2 fUX2 (x )dx
1 0

where 0= arctan

Therefore the steady-state response of a damped bar with shear and

bending flexibility (representing the ship hull) to a sinusoidal force of

amplitude F acting at xo is

i=y0 F Xi(x,) sin (wt-0i)Xi(X)

W = +2 (x)dx

The number of components to be used in practice appears to be not

greater than six. If the two rigid-body motions of heaving and pitching are

not included in the normal modes, they must be computed separately and added

to the series. The above relatively simple equations theoretically tell the

complete story of the steady-state vibration of a ship in the vertical plane

under the action of a known sinusoidal driving force acting at one point.

It is particularly to be observed that, while in the steady-state

condition a driving force excites to varying degrees amplitudes in all the

normal modes, all these components have the frequency of the driving force and

not the natural frequency of the mode as they would have in a free vibration.

Moreover, while the different components will have different phases relative
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to the driving force, there will be no shift in phase of the various compo-

nents relative to one another during the steady-state vibration. Practically

the damping is usually so sm~ll that all components whose natural frequency is

above the driving frequency are in phase witn the driving force at the driving

point and all components whose frequency is below the driving frequency are

180 degrees out of phase with the driving force at the driving poin.

It is next in order to consider a method of computing the steady-

state vibration of a ship in the vertical plane when nothing is known initial-

ly about its normal modes but when only the EI, KAG, i, and c functions are

given. The method is based on the same set of finite-difference equations as

used in the method for determining normal modes previously described. This

method, though considerably more complex when applied to forced vibration,

will also give the normal modes.

Whether the motion is free or forced, the same difference equations

apply to the system. The method is more complicated because external forces

now have to be taken into account whereas in the normal-mode problem external

forces and moments can be considered absent. The further complication is due

to the fact that the damping forces under the assumed condition of viscous

damping are 90 degrees out of phase with the displacement since they are in

phase with tne velocity.

The process consists in setting up the same finite-difference equa-

tions as used for the normal-mode calculations, but introduciig the damping

forces and the external driving force as additional terms to be added to the

vertical shearing force at the appropriate stations. Details of the method

together with an example are given in Reference 18.

The same two general approaches to the forced vibration problem are

also applicable to the transient problem and will be considered in the same

order. When the normal modes have been previously determined, the response of

the ship to an arbitrary transient load can be found in a manner similar to

that previously givan for the steady-state response. An expression is derived

for the transient response in each normal mode and the resultant response is

obtained by summation of the series of terms representing the component in

each mode. Again, although a convergent infinite series describes the exact

solution, usually only about six terms or less of the series need be consid-

ered to obtain an accuracy consistent with the accuracy of the assumptions

underlying the theory.

Before considering the formula for the response in any normal mode

:" is helpful t3 recall the transient response 01 a system of one degree of

freedom to a force which is an arbitrary function of time. Let the mass be at

rest at time t = 0. Then it is well known that the displacement at time t > 0
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caused by a force P(t) is

x(t) = fP(to )h(t - to)dt o
0

where h(* - to ) Ij the reop.r)ne tc a unit impu15t 3pplled at t'me to .

To extend this idea to the ship it is necessary only to remember

that as in the case of forced vibration the system behaves in eacn normal mode

as though It were a system of one degree of freedom. Instead of the mass m

for the system of onu degree of freedom tnere must be substituted the effec-
tive mass for the nth normal mode of the ship

Mn = X2(x)dx

and the effective spring constant

KnKn = nMn

In the ca-e of the ship a distributed damping assumed proportional to ji must

also be considered and the effective damping constant is:

C = f cXn(x)dx
n 0 n

If a vertical impulse H acts at distance xo from the after perpen-

dicular, the response in the nth normal mode is obtained by finding the effec-

tive impulse and then applying the formula for a one-degree system to the nor-

malized mass and spring values and in this case also introducing an exponen-

tial damping term. Thus

(.H X(xo) 2Mr

qn = n e ' sin Ant
XAMn nCn 'n 2

where An = " 1M q n has the dimension of length and, to obtain the

displacement at any point x, qn must be multiplied by the value of the normal-

mode function at x, namely X n(x).

The total response of the ship to an impulse H at xo is obtained by

summation of the series of responses in the various normal modes, and the re-
s-ns to a n l-l H~ at x and4 at ti,..1 I.,~

n= c n= coX (x () --
=nYn -q e sin A (t-t

HqXn(x) AMZ n(X)
n=1 n=1
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As In the case of the system of one degree of freedom the response

of the ship to an arbitrary force function (x, t) (where Q has the dimensions

of force per unit length) can be obtained by summation of the responses to

successive Impulses of tne form Qdtdx, and the total response to a transient

force function Q(x, t) takes the form of a double integral

t(xo t o )

y(x, 0 J dx o  H YH(X, t, x 0 , t )dt 0

WnIle the complete response can thus be written in a fairly compact expression

it is clear that, given the arbitrary function W(x,,t,), the working out of

tne formula to obtain y(x,t) will in general be quite laborious.

Tne degree to wnicn the solution must be worKed out depends on the

particular Information required. if for instance the excitation consists of

an impulse applied at the bow and it is desired to know only the response in

tne first mode, the formula for qn on page 26 is sufficient.

The application of the method of finite differences to the transient

protlem involves more computation than the steady-state problem but the basic

principle is the same. The same difference equations apply as in the steady-

state problem but in this case it is not permissible to assume that a solu-

tion exists In the furm Y(x) sin wt. Instead steps in time as well as the dis-

tance Y are employed. Given an initial condition for the ship, namely, the

deflection and velocity at every point from stern to bow at time t = 0 and an

initial set of forces acting, the condition at a short interval of time later

t + At can be found by computing the acceleration at every point at t = 0.

These accelerations depend not only on the external and damping forces but

also on the shearing forces applied by adjoining sections.

It is necessary in this case to represent each variable by both a

subscript and a superscript, the former to designbte that position along the

length of the snip at whicn the variable is being considered and the super-

script to designate the instant of time at which it is being considered. In

addition to the four variables coensidered in the steady-state problem, namely,

the shearing force V, the bending moment M, the slope Y due to bending only,

and the displacement y, there must now be added the velocity S and the accel-
eration Y, the dot notation indicating differentiation with respect to time.

The difference equations in space (t fixed) are similar to those

used in tne steady-state protlem. but since y is no longer of the form f(x)

sin wt tne equations nave the following more general form
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Vn+1 = Vn -mn~n - Cn + Fn

M n+ =Mn + Vn+IAx

n+= n + Mnx
EI

V AX
Yn+1 Yn + nAX " KAG

The difference equations In time are as follows:

•n+1 n nYn =Yn +Yn At

n n n nv n  i n.n n Yn +Fn n n+ n nn = mn  Mn  mn  mn

n+1 =n + n
Yn = n n

If the ship is at rest when the transient disturbance starts to act, the ini-

tial conditions are:

0 O 0 =0Yn = Yn = Yn

Since the shearing force and bending moment remain zero at both ends through-

out the motion, the boundary conditions become

Vn n V O M n 0
0 MO 20 20

Whereas in the steady-state problem yo is taken as unity and Y. is carried as
an unknown, in this problem yn and Yn are both carried through as unknowns and

0 0

found from the boundary conditions.

Althougn the problem involves a considerable amount of computation,

if the external forces are tabulated for intervals of time from t n 0 at each

of the twenty stations, the calculation of the deflection and vplocity of all

points of the ship at any future time is given by the routine use of the above

formulas. For each interval of time there has to be carried out a calculation
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of the same type as is made for each assumed frequency in the normal-mode cal-

culation. So far opportunity has not permitted testing out this scheme.

5. HORIZONTAL BENDING, TORSIONAL, AND COUPLED TORSION-

HORIZONTAL BENDING MODES

While offhand it appears that horizontal bendin , modes can be dealt

with in the same manner as vertical bending modes with the exception that tne

area moments of inertia are to be taken with respect to the vertical centroid-

al axis, consideration of the lack of symmetry leads one to expect the former

problem to be more complicated.

In the case of the USS NIAGARA, data were lined up for digital com-

putation of horizontal modes by means of the same set of difference equations

as used for the vertical modes. The moments of inertia of areas included the

same members as were included in the vertical calculation, no members above

the weather deck being considered.

The virtual-mass values for horizontal vibration were arrived at by

taking as the "entrained area" the area of the inscribed circle, that is a

circle having a diameter equal to the draft. Thus at each section a mass of

water equal to that of the water displaced by a circular cylinder, having the

length of the section and a diameter equal to the draft, was added to the mass

curve of the ship in making the horizontal-vibration calculations. As in the

case of the vertical calculations no a.lowance was made for a possible varia-

tion in the horizontal virtual mass with frequency.

The calculations of horizontal modes were carried out by the digital

process for the same set of conditions as tried for the vertical calculations,

namely, bending only, shear only, combined bending and shear, and combined

shear, bending, and rotary inertia. The calculated frequencies followed the

same general pattern as for the vertical case. For the case with bending only

the first-mode frequency checked fairly well but beyond this the frequencies

became progressively too high. Likewise the calculations based on shear only

were too high for the first mode and better for the second. Rotary inertia

again had little effect but the calculations based on bending and shear, while

giving the best over-all results, were too low for all three modes found ex-

perimentally. This could have been due either to using too large a value of

virtual mass or too small a value of rigidity.

14hI ea ex e lm n a C"I e c 13 M.V- ~ .. a U ;,1V QkUjJ)J'.0i V-. 611C IjJLK

beam theory for static bending in a vertical plane, similar evidence for stat-

ic bending in the horizontal plane has not yet come to the authors' attention.

The term KAG used to represent shear stiffness in tne calculations was based

on the assumption tnat inner decks carried shear load. In the case of
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the calculations for vertical modes the one based on shear only and that based

on bending only gave very nearly the same frequency for the second mode (which

of course was considerably higher than the experimental value). In the calcu-

lation of horizontal modes of vibration the frequency of the second mode cal-

culated on the basis of shear only was considerebly higher than that based on

bending only. Becauu of the possibility of coupling between horizontal bend-

ing and torsion in the transverse plane, it has rot seemed profitable to pur-

sue the question of horizontal bending and shear rigidity further during this

investigation.

The number of cases reported in the literature in which torsional

modes have definitely been identified is relatively small. This may not be a

true indication of their importance as it seems not only possible but probable

that many cases of horizontal vibration in which the mode has not been def-

initely established were torsional modes in which tne motion was predominantly

horizontal at tne measuring station (as for example, on an upper deck alo!,

the centerline plane).

Mathematically tne calculation of uncoupled torsional modes presents

no great difficulty provided rational values of torsional rigidity and mass

moment of inertia can be determined for a sufficient number of stations be-

tween stern and bow. This proviso, however, is not easily disposed of. If

it be assumed for tne moment that these quantitis' can be determined, two rath-

er well-known methods are available for the calculation of torsional modes.

Tne Holzer method widely used in the calculation of torsional vibra-

tion of engine-shafting systems2 6 can be applied to the snip problem by first

breaking down the system into a dynamically equivalent system consisting of a

series of disks (inertia members) connected by massless rods (torsion members).

This is really the method of finite differences which has been discussed under

vertical flexural modes. In the to:sional case the calculation is much sim-

pler since the problem involves only a second-order differential equation. In

the case of a uniform cylindrical shaft, for example, the differential equa-

tion is
GJ e --- = I. 2

e x2 Aat2

where G is the shear modulus of elasticity,

Je is the effective polar moment of inertia of the section area,

Iis the effective mass moment of inertia per unit length with
respect to the longitudinal (x) axis, and

9 is the instantaneous angular displacement at any point along
tne shaft.
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Besides the Holzer method the Stodola method can also be applied to

the torsional calculation. To do this the effective mass moment of inertia

per unit length and the area polar moment of inertia are first plotted against

axial position and a normal-mode shape for torsion Is assumed just as In the

case of flexural vibration. 5 Again as for flexural vibration the normal-mode

shape assumed is tnat for a uniform cylindrical shaft. The solation of the

above differential equation gives for the fundamental normal modL of a uniform

shaft the function

Ccos- -

If this assumed amplitude function is multiplied by the mass moment of inertia

function. a dynamic torque function is obtained and a base correction to the

assumed amplitude curve can be made so as to satisfy tne end conditions that

in a free oscillation tne torque at either end must be zero. A double inte-

gration of the T/B curve (torque over torsional stiffness B = GJe ) will again

yield an amplitude function from the absolute value of which the frequency may

be computed.

In order to use either the Holzer or Stodola metnod for calculating

the torsional modes of a ship it is necessary to evaluate for a sufficient num-

ber of sections of the ship (say 20) the effective polar moment of inertia of

the section area and the mass moment of inertia. At the present stage of de-

velopment of torsion theory of ship-type structures sImplifying assumptions

are made.

A theory of the torsion of ships was Froposed by G. Vedeler.2 7 Ac-

cording to this theory the total torque developed by any hollow section of

thickness t is given by the formula

T = 2A tr

where T 13 the torque,

A is tne enclosed area,

t is the thickness, and

r is the snearing stress.

To allow for stress concentrations at deck edges an empirical coefficient k is

introduced and tne formula for torque becomes

T = k A tr

_b

where k Is les than 2. For rectangles of width a and heignt b - 2 a

For a tnin rectangular solld

T t2hT
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where h is the width and t the thickness. For a hollow section of variable

wall thickness Vedeler gives for the torsional constant per unit length (re-

storing torque per unit angle of twist per unit length)

2kA2G

t

where G is the shear modulus and X is the peripheral length of each wall of

thickness t. Since for a circular section the torsional constant per unit

length is equal to GJ where J is the polar moment of inertia of the section

area (nrd4/32), it is convenient to introduce the term Je for the effective

polar moment of inertia of a noncircular section. This does not mean that T

can be evaluated in the way polar moments of inertia are ordinarily evaluated.

It simply means that the product GJe gives the torsional stiffness or restor-

ing torque per unit angle of twist per unit length just as GJ does for a cir-

cular section. Vedeler's theory has not been extended to multiple-deck ships.

Horn 28 proposed for the effective polar moment of inertia

~4F 2

Je 
0

e AS6

where As is a small distance along the wall en-losing the section,

6 is the plating thickness, and

F is the enclosed area.

Horn's formula for the effective polar moment of inertia of section area

agrees with the formula

2kA
2

Je _----I

t

given by Vedeler if k is assumed equal to 2.

For a free-free uniform circular cylinder the natural frequencies in

torsion are given by the formula

n j2 I I

where G is the shear modulus,

J is the polar moment of inertia of section area,

I is the mass polar moment of inertia per unit length.

I is the length,
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is the natural circular frequency of the nth mode in radians per
second, and

n has the successive values 1, 2, 3,

On the basis of the formula for the uniform cylinder Horn developed

an empirical formula for the torsional frequencies of ships somewhat similar

to Schlick's formula for vertical flexural vibration. Horn's formula is

Ne = 60k ii
Y D(B2+Hz)L

Although Horn used metric units in this formula, since the part of the formula

under the radical must have the dimensions t-2 , the following English units

may be used:

Ne = natural frequency (cpm)

g = acceleration of gravity (ft/sec2 )

eo = effective polar moment of inertia o midship section area

according to formula on page 32 (ft

D = displacement in tons

B = beam in feet

H = depth in feet

L = length in feet

G = shear modulus of elasticity (tons/ft2 )

k is an empirical coefficient which Horn found for the freighter

WASGENWALD to be 1.58 for the fundamental mode, 3.00 for the second mode, and

4.07 for the third mode.

A computation of the fundamental torsional mode of the USS NIAGARA

by Horn's formula based on the value of k found for the SS WASGENWALD gave a

frequency of 239 cpm against the experimental value of 322 cpm. A calculation

by Holzer's method based on polar moments of inertia of area taken equal to

the actual polar moment of inertia of the section areas up to the weather deck

and mass polar moments of inertia obtained by estimating radii of gyration

with respect to the centroidal axis gave for the fundamental torsional fre-

quency 629 cpm, a rather wide discrepancy.

In addition to the obstacle of correctly evaluating the mass and

area polar moments of inertia, there appears to be another fundamental diffi-

culty in the way of calculating torsional modes of ships, namely the coupling

that may exist with bending modes. Apparently the extent of such coupling

has not been investigated up to the present and is unknown. Bentneo ̂P he

symmetry of most vessels with respect to a vertical plane through the longi-

tudinal axis there appears to be no need of considering coupling between
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vertical flexure and torsion. The center of mass of all sections may in gen-

eral be asvvumed to lie on the vertical centerline of the section, and hence

there is no tendency to produce a rotation when the ship vibrates vertically.

On the other hand the vertical position of the center of mass of a section may

vary appreciably in going from stern to bow.

In Figure 3 is shown an element of the ship of length Ax and a set

of rectangular coordinates with X-axis parallel to the longitudinal axis of

the ship. This axis is arbitrarily located to pass through the centroid of

area of the midanip section. This choice of the X-axis implies neitner the

assumption that the various sections of the ship are oscillating about this

axis nor that this is the "center of twist" for torsion of the hull. If the

equations are set up correctly according to the laws of dynamics and if the

mass moments of inertia are correctly computed with reference to this axis as

well as the vertical distance of the center of mass and center of shear of

each section from this axis, the solution will show how much torsional and

how much bending vibration takes place in any normal mode.

Z

CtoM
Center of Mass
Center of Sher

T~ ~ I TAT

Figure 3 - Free Body Diagram of Section of Ship of Length Ax Subject to Forces
and Moments Due to Coupled Horizontal Bending-Torsion Vibration

In the element represented in Figure 3 the Y-axis is taken in a hor-

izontal plane since the coupling is assumed to exist between torsion and hori-

zontal flexure. A right-handed coordinate system is used and the following

definitions apply:

m is the mass or linear inertia (pAx) including the virtual mass of
water moving with the hull in the horizontal direction

Imx is the mass polar moment of inertia of element about X-axis
(uI.uAx)
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is the coordinate giving location of the center of mass of each
section of the ship (including virtual mass of the surrounding
water for horizontal vibration) with respect to the X-axis

z is the coordinate giving the location of the center of horizontal
shear.

Imz is the mass polar moment of inertia of the element about a vertical
(Z) axis

Y is the slope in the horizontal (XY) plane due to component of de-
flection due to bending only.

0 is the angular displacement about X-axis considered positive when
clockwise as viewed looking in positive X direction

y is the linear displacement in Y direction of points of ship
sections initially on X-axis.

y' is the linear displacement of the center of mass of the section
in the Y direction

y is the linear displacement of the center of shear in the y
direction

T is the summation of the moments with respect to the X-axis of
the shearing forces acting on all elements of area of the section
considered positive if, when looking in the positive X direction
from the origin, the part of the system nearest the origin tends
to rotate the part farthest from the origin in a clockwise di-
direction

V is the horizontal shearing force at any section considered pos-
itive when the section to the left tends to move the section to
the right in the positive Y direction

M is the bending moment at any section acting In the horizontal
plane considered positive when it tends to make the system con-
cave when viewed from a point in the positive Y half-plane

Ax is the length of each element

El: is the bending rigidity of the section about the Z-axis

GJe is the effective torsional rigidity of the section

KAG is the horizontal shearing rigidity of the section

The finite difference equations are based on the laws of mechanics

applicable to the linear and angular motions of the elements. Thus if Newton's

law is applied to forces in the Y direction

MY,= -AV

y= y -

hence
-AV =my mz9

A change In bending moment exists between the ends of the element

due to a change in the lever arm of the shearing force, and there is also a

change in moment due to angular acceleration about a vertical (Z) axis. Hence
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AM = VAx + imzY

From the definition of Y as slope due to bending only, it follows

from simple-beam theory that
MAx

El

From the definition of shear rigidity It follows that the deflection due to

shear in passing froin one element to the next is

Ay It VAx

The change In deflection due to bending is

hy" = YAx

Since
y= y - , 4y = Ay" + £A

whence
Ay4y + 4 + =4

Since as shown on page 37

A 0 =-(T+V=)AxGJe

Ay =VAx - V TAx Vz2Ax

KAG GJ e GJe

The change in moment about the X-axis between the ends of the ele-

ment is determined by the mass polar moment of inertia about the X-axis and

the angular acceleration as well as the vertical distance of the center of

mass from the X-axis. The expression for the change in moment can be derived

by considering the rate of change of moment of momentum with respect to the

X-axis. The moment of momentum of a rigid body with respect to an axis fixed

in space is equal to the moment of momentum of a particle having the mass of

the rigid body and the velocity of its center of mass plus the moment of mo-

mentum of the rigid body with respect to a parallel axis through the center of

mass. The moment of momentum with respect to an axis through the center of

mass and parallel to the X-axis is

= I2
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Therefore the moment of momentum with respect to the X-axis is

my' + = -m~"i + -

Since the change in moment must be equal to the time rate of change

of moment of momentum

-AT = -my'l + I mx -mi2# -mEy + Imx

Therefore during a vibration

AT = yc 2 + I mxcd

The moment T is the resultant of the moment of the shear force V acting

through the center of shear and a torque. The latter is equal to (T + Vz), a

quantity which is independent of the choice of the X-axis.

The only remaining difference equation to be derived is that giving

the relation between the change in angle of twist and the torque. This fol-

lows from the definition of effective area polar moment of inertia J e and the

equation is

AO= -(T+Vz=)Ax
Gie

If the system is assumed to be vibrating at circular frequency W,

all quantities are simple harmonic functions of time and reach their peak val-

ues simultaneously. It is therefore permissible in writing the difference

equations t3 substitute, for the second derivatives with respect to time, .W2

times the amplitude. Thus -4J is substituted for and -yw2 for y, where

and y are now understood to be functions of x only.

Also in the coupled torsion-bending problem the natural frequencies

are determined by the end conditions that the shear force, bending moment, and

torque are zero at both ends of the ship. The relation between y, 0, and Y at

station 0 cannot be assumed known, but a linear combination of solutions in

which each of these terms in turn ts taken equal to unity, while the other two

are zero, can be found which will satisfy the end conditions. Tnus three

cases can be taken as follows:
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Case y Yo J 0

I 1 0 0

II 0 1 0

III 0 0 1

The end conditions require that there exist three quantities a, b, and c such

that

I II III

aV2o A +bV 2o A +cV2oA =0

I ! 1 I+la2o A + b2o A + M2oA =0

aT' +bT +cT -

20A 20A 2o A 0

For a solution to exist other than a = b = c = 0 the determinant

VI  11 VIII
2o A V2o A 2o A

I M11 MIII
M2o A 2 A 2 o A

TI TifI IIIT2O TA T2O
2o A 20 A 2o A

must equal zero. Any frequency at which this condition is found to hold is a
natural frequency. A convenient way of finding the critical frequencies is to
plot the value of the determinant against w. This should give a smooth curve
which crosses the axis at the natural frequencies.

It may be noted that in the case of the uniform symmetrical bar, if
the X-axis Is taken tnrougn the center of mass, the quantities 7 and =z vanish

and the torsional and bending modes are no longer coupled.
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When the natural frequencies have been found, the normal modes are

obtained simply by plotting the values of y and 0 appearing in the calcula-

tions made at those frequencies. Where a natural frequency does not occur at

one of the computed values, it is necessary to interpolate between the values

of y or the values of 0 obtained in the two calculations on either side of the

critical value and to use proportionality factors according to the proximity

of the critical frequency to the frequencies for which the calculations were

carried out.

6. EXCITING FORCES

If an estimate can be made in the early stages of design of the vi-

bratory forces to be expected to act on the vessel under service conditions,

then there is some hope of anticipating the amplitudes that may be encountered

in service by making use of the forced-vibration computations previously

outlined.

Pioneering work on the problem of determining the vibratory forces

was carried out by means of model tests some years ago by F.M. Lewis.22 The

forces were determined on self-propelled models by neutralizing the vibration

with a rotating weight of adjustable eccentricity. The vibratory force thus

neutralized could be computed from the known weight, eccentricity, and speed

of rotation.

In the self-propelled model test the relation between model shaft

speed and full-scale shaft speed is given by the equation

i/length of ship,(model rpm) - (ship rpm)x lent of ship
length of model

and the model forces are stepped up to full-scale values by the equation

(full-scale vibratory _(model vibratory (displacement of ship)
force) force) (displacement of model)

Although Lewis' work on this project was carried out at the U.S.

Experimental Model Basin, the Model Basin itself did not experiment with the

method until recently, when an attempt was made to determine the vibratory
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forces on a model of a proposed passenger vessel for the U.S. Maritime Com-

mtssion. Many experimental difficulties were encountered in the attempt to

exterd Lewis' metnod. 'n particular the wooden model had a natural freqjency

in the operating range of model blade frequencies. Moreover the sensitivity

of the pickup system was such that signals could be detected only in the vicin-

ity of resonance cf the model which was not related to the natural frequency

of the prototype. No attempt has been made at all to build complete dynamical

models for this investigation and aside from the difficulties in the constrac-

tion of steel models it would be impossible t, satisfy the condition that the

frequency vary inversely as the scale inasmuch as the self-propelled model

shaft speed must vary inversely as the square root of the scale.

In view of these difficulties the development of the model technique

for determining vibratory forces is now in an inactive status at the Model

Basin.

It appears that whatever data are to be obtained in the near future

as to the magnitude of exciting forces must be obtained from full-scale meas-

urements. It would not be a simple matter to apply Lewis' method to a full-

scale ship, but it does appear feasible to obtain a rough estimate of the ex-

citing force by installing a vibration generator on tne weather deck over the

propellers and running the machine through the speed corresponding to propel-

ler-blade frequency while the ship specd is maintained constant and a continu-

ous record of vertical vibration is made by means of a pallograph. It is to

be expected that, as the frequency of the vibration generator approaches the

propeller-blade frequency or the shaft frequency in the case of first-order

vibration, the vibration of the hull will assume a beat characteristic and

that from a measurement of the maximum and minimum amplitudes, occurring during

beating, the ratio of the exciting force caused by propeller action to the ex-

citing force produced by the vibration generator can be obtained.

From what scant information is now available it appears that force

amplitudes of the order of 10,00o pounds are to be expected, and the forces in

general will vary as the square of the shaft speed. It can also be stated

qualitatively that vibratory forces will diminish with increasing tip clear-

ance and with increasing uniformity of the wake over the area of the propeller

disk. In general the vertical and lateral forces may be expected to be large

if the thrust and torque variations are large.

It is to be hoped that as full-scale information on propeller excit-

ing forces is accumulated in the future, it will be possible to correlate the

data with wake-pattern data so that some idea of the magnitude of exciting

forces can be obtained from the model wake surveys.
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7. ELECTRICAL ANALOGY METHODS

The calculations previously described are readily carried out by

means of sequence-controlled digital calculators. It is natural to inquire

whether true electrical analogies are possible in this case. Do there exist

circuits whose elements represent definite physical properties of the ship and

in which voltages and currents represent definite forces and motions in the

mechanical system?

Electrical analogies of mechanical systems which vibrate longitudi-

nally or torsionally are well known and of considerable practical utility.

Such analogs are usually of tho conventional (mass-inductance) type or the mo-

bility (mass-capacitance) type. They involve second-order differential eua-

tions, and each type of circuit element used in the circuit represents the

same type of mechanical quantity wherever it occurs.

In attempting to set up electrical analogs of vibrating beams or

ships fourth-order differential equations must be dealt with and t.e difficul-

ties in establishing the analog are considerably greater.

Kron29 has worked out a scheme of great generality by means of which

circuits may be derived not only for flexural, but for combined flexural, tor-

sional, and longitudinal modes and where these different types of motion may

be coupled or uncoupled. Kron's general tensor method for accomplishing this

derivation yields circuits that are analogous to the mechanical system in the

mathematical sense, but in the majority of cases the capacItance, resistance,

or inductance values of the elements of the analogous circuit must be varied

with frequency so as to maintain the required impedances or admittances. Fur-

thermore, even where large network analyzers ar. available so that the circuit

elements can be changed readily by merely turning dials, the range of param-

eters required to cover the necessary frequency range for the problem is often

prohibitive. However, the circait may serve as a basis for computation in tne

field of alternating-current theory which is generally more familiar than the

field of mecnanical vibration.

A protlem considered by the autnors has been to find a circuit anal-

ogous to the ship vibrating in flexure, the circuit itself being independent

of frequency IL has also been an objective, If possible, to find a circuit

without transformers becauoe of the difficulty in realizing the ideal proper-

ties required of transformers In electrical-analog computations. So far a cir-

cuit with passive elements only ana witnout transformers has not beer found.

Flexural viLratrI Invo e, totrn forces and tending m ,n.rtQ 3F Z ....

placements an..' -lores. Sirnc- voltage ana current are tne only measArabie elEc-

trical quant1 t , tre clrc It will require some components in whicn a c.rrLnt
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has a different significance tnan it has for certain other components. Like-

wise voltages in general will represent more than one mechanical quantity ac-

cording to their location in the circuit.

Before considering an analog employing transformers (which has al-

ready given very encouraging results) it is important to consider the laws of

similitude which should be observed in transforming the equations, so as to

permit the use of physically realizable valu, of circuit elements which make

up the analogy. In other words, before the analogous circuit is derived from

the mechanical system it is in general necessary to transform the latter into

a similar system, that is, one derived according to the laws of similitude and

wnicn has a similar response over a frequency range commonly encountered in

electrical circuits. The rules governing such transformations, as applied to

the specific problem of a vibrating beam having botn shear and bending flexi-

bility, may be obtained by uimensional analysis. The Pi Theorem of Bucking-

ham30 facilitates the process of establishing the equivalent system.

The three fundamental mechanical quantities are taken to be mass,

length, and time, and the dimensiunal relations for tne quantities entering

into the ship vibration problem, see Reference 31, are:

Quantity Dimensions

-I ml2t-2A x

KAG mt- ,'
A x

m =,Ax m

L

t-"1

C mt"

Since there are six 4uantities Involved and three fundamental units,

tne number of ir's is three. These are as follows:

'I
7T y - 1 2 ( (w -2

KA KAx

7T( (C)(pudx)-" Mw)
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where E is Young's modulus,

I is the area moment of inertia of the ship section,

is mass per uit length including virtual mass of the surrounding
water,

A is the section area,

G is thb shear modulus of elasticity,

K is the ratio of average shearing stress to shearing stress at the
neutral axis, and

C is the damping force per unit velocity acting over a section of length
Ax and is equal to cdx where c is damping constant per unit length.

If the flexibility in shear and damping are neglepted only 7E_ .as

to be considered. 41

A transformer analog of the nonuniform beam with shear and bending

flexibility has been proposed by H.M. Trent32 which represents tne same set of

finite difference equations (page 11) as has been used in the digital-computa-

tion process. This circuit, which is described in detail in Reference 33,
will not be discussed further here but a typical section of the circuit with

a damping element included but the rotary inertia element omitted is illus-

trated in Figure 4. It is to be noted that it conforms to the general scheme

Usin Idea Tanfome

Sn 
in +i

C -0

Figure 4 -Typical Section of Analogy of Vibratin~g Ship
Using Ideal Transformer

Tle Irri, rmer - ' ,," (, ,-, *rat er t. 's r.t' eous polarity across

tr m ' v. l ; *,, ":~ ~ r r ' m- t !,,p to gr,, -1 ri'.- Inst ritaneola po-
lr',+, va:r *'' .. . ', I ' -', , r. r~g"' 'o le
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of the mobility analogy and employs an "ideal transformer." It allows for the

effects of both shear and bending flexibility. In the figure the mechanical

symbols for shearing force, bending moment, slope due to bending only, and de-

flection are used directly to indicate the magnitudes of the analogous cur-

rents or voltages as the case may be, in the electrical circuit. V and M rep-

resent currents and and V represent voltages. As usual the dot notation

represents differentiation with respect to time.

The transformer shown in Figure 4 has one winding in series witn the

coil representing dx/KAG while the other winding shunts the moment line to

ground. As indicated in this figure the transformer ratio is 1:dx, which

means that if a unit difference of potential exists across the shunt winding,

then a potential differenceAx is induced across the series winding. In gen-

eral, the required transformation will involve an increase in the frequency,

that is, the oscillator will drive the circuit over a higher freiuency range

than the range of frequencies encountered in hull vibration. Synmetry may be

obtained here by dividing the condenser m and the coil Ax/EI in two and plac-

ing half at each end of the circuit. When this 13 done, these halves will com-

bine with the halves from the adjoining section so that, except at the ends,

the circuit will have the same general appearance as shown in Reference 33.

A 20-section transformer circuit representing the USS NIAGARA was

set up on the network analyzer at the Taylor Model Basin, and both normal

modes and natural frequencies were determined. From a comparison between the

results obtained with this analog and the results obtained by digital computa-

tion, it appears that the analog permits as much accuracy in solving this prob-

lem as is warranted by the accuracy of the given data, that is, the quantities

EI,#, and KAG.

The time required for obtaining normal modes and natural frequencies

by means of this analog is scarcely more than the time required to set up the

circuit.

One of the great advantages of the electrical analog, if it is a

true dynamic analogy, over other methods of calculation in problems of this

sort is the ease with which forced steady-state vibration and transient vibra-

tions can be obtained. Certain of the forced-vibration calculations for the

USS NIAGARA (with a sinusoidal driving force of one-ton amplitude acting at

various positicns along the hull and for a uniformly distributed viscous damp-

ing) which wer2 made on the digital sequence calculator were also set up for

solution on the transformer andlog, and the results are discussed in Reference

33.
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8. SUMMARY AND CONCLUSIONS

The methods described in this report show promise of yielding at

least the first six vertical modes of vibration of a ship. The limits of ac-

curacy are close enough to offer a basis for designing so as to avoid having

to operate close to a critical frequency.

Where In a design it is not possible to reduce the exciting forces

or to alter the operating speed it may still be possible to alter the longi-

tudinal position of the propellers or unbalanced machinery in such a way as to

reduce greatly the combined amplitudes in the various normal-mode components

at the operating speed. The methods given in this report should indicate the

improvement to be expected from such alterations.

Improvement in the accuracy of calculating the vertical modes can be

expected only when improved methods of estimating the parameters that enter

into the calculation have been found. These parameters are chiefly the mass

(including the virtual mass of surrounding water), the bending-rigidity fac-

tors, and the shear-rigidity factors. In special cases the rotary inertia may

also be of importance.

The methods described are not limited to the calculation of natural

frequencies and normal modes but are applicable to forced vibration also. For

this purpose, however, the additional factors of driving force and damping

must be taken into account. At present, reliance must be placed on the scant

experimental data available in estimating these values. As experimental data

are collected in this field in the future forced-vibration estimates will be-

come more reliable.

The calculation of horizontal and torsional modes of vibration for

the present must involve more assumptions than the calculation of the vertical

modes 6s less is known about all the parameters entering into the calculation

in these cases. The possibility of coupling between torsional and horizontal

vibration suggests the desirability of setting up calculations for such cou-

pled modes by the use of the equations given here. The extent of such cou-

pling Is at present unknown, but the calculation if correctly set up will

yield the uncoupled modes also in case tho coupling should prove to be of neg-

ligible extent.
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